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1. Introduction

Geo-distributed data analytics (GDA) plays an important role for many Internet applications to mine meaningful
insights from large-scale geo-distributed data generated in a multiple-cloud environment. It comprises tens of geo-
distributed data centers (DCs) and hundreds of smaller scattered edge clusters of cloud providers like Amazon,
Microsoft, and Google. For example, Facebook and Twitter analyze highly diffused users posts and systems logs to
query global trends, make advertising decisions, and check overall cluster health. Minimizing GDA query latency
is a critical workload for these Internet applications as it can affect their revenues significantly.

Since these queries can be sent at any time, i.e., ad-hoc queries, which may cause peak workload, existing
GDA systems typically deploy overprovisioned compute resources a prior, i.e., redundant virtual machines (VMs)
in multiple DCs, to process incoming queries without a performance bottleneck. This approach is simple and
allows queries to be handled promptly. However, this approach would incur a significant monetary cost ($), i.e.,
cost-bottleneck, for redundant VM instances that are charged throughout allocation even though they are idle.

To avoid additional cost for idle compute resources, many scalable systems [12, 13, 16] have been introduced
to determine optimal compute resource configurations by predicting applications workloads, i.e., deploying addi-
tional VM instances to handle peak workloads and terminating them when the queries are done. These systems,
unfortunately, may encounter a performance bottleneck for latency-sensitive workloads because they have ignored
unavoidable overhead of VM, i.e., boot-up time (> 60 seconds) [29]. In addition, these systems may encounter a
cost-bottleneck as well because they only considered a single DC setting, where the network is not a performance-
bottleneck [9, 10, 46] and data transfer is free of charge. Thus, these systems cannot work well for GDA that re-
quires large data transfer via a wide area network (WAN), one of the most expensive and scarce resources in a
multi-cloud environment.

This proposal aims to determine optimal cloud configurations (how much compute resources at each DC)
to handle GDA queries in a timely and cost-efficient way while avoiding performance- and cost-bottlenecks.
To achieve this goal, the proposed research agenda includes predicting applications workloads by building a pre-
diction model and determining the best cloud configurations for queries based on prediction. In addition, a newly
emerging compute resource called serverless (SL), which offers agility, i.e., very small boot-up time (< 100 ms),
will be considered for optimal cloud configurations to avoid the significant boot-up overhead of VM.

The proposed ideas and approaches will be evaluated to show their efficacy by building and deploying a proto-
type implementation in both simulated and real multi-cloud environments and comparing them with state-of-the-
art approaches as baselines. Results from this research effort will be used to design a scalable GDA system, which
exploits diverse and heterogeneous cloud resources in a multi-cloud environment to achieve the GDA applications’
desired cost-performance goals easily.

2. Related Work and Motivation

To achieve the goal in this proposal, precisely predicting GDA workloads is one of the most critical tasks. This
section presents existing state-of-the-art techniques for workload prediction and other related works.

2.1. Workload Prediction

Table 1 shows state-of-the-art solutions for workload prediction to determine optimal compute resource configu-
rations. Ernest [45] and Optimus [33] attempt to model the application parameters and then use a Non-Negative
Least Squares (NNLS) algorithm to estimate optimal values. Cherrypick [1] uses a Bayesian Optimizer [11, 19]
and assumes the performance model of a distributed cloud application as a black box. CrystalLP [38] uses a deep
learning model of Long Short-Term Memory (LSTM) to generate a future set of data server workloads. Since these
systems have considered VM only for optimal cloud resource configurations, they will encounter a performance
bottleneck while handling latency-sensitive workloads due to the boot-up latency of VM. To avoid the overhead of
VM, recent works, MArk [50] and Spock [17] have applied LSTM and Linear Regression (LR) respectively to a
combination of VM and SL instances based on the ML-Inference application attributes. These existing workload



Table 1. State-of-the-art Workload Prediction Systems

Systems VMs SLs Technique Application WAN Tradeoff
Ernest [45] Yes No NNLS Advanced Analytics No No

Optimus [33] Yes No NNLS Deep Learning No No
Cherrypick [1] Yes No Bayesian Recurring Data Analytics No No
CrystalLP [38] Yes No LSTM Storage Systems No No

MArk [50] Yes Yes LSTM ML Inference No No
Spock [17] Yes Yes LR ML Inference No No

prediction systems, unfortunately, will not work well for GDA as they have not considered WAN that causes both
performance- and cost-bottlenecks in GDA.

2.2. Serverless-enabled data analytics systems

SL is appealing for data analytics to handle peak workloads thanks to its agility, i.e., minimal boot-up time (< 100
ms), and thus numerous SL-enabled data analytics (SDA) systems [24, 27, 28, 35, 40, 42] have been introduced.
These systems focused on addressing the limitations of SL and showed that using SL can handle peak workloads
quickly and cost-efficiently without over-provisioning VMs. However, these systems may encounter performance
and cost bottlenecks because they have ignored the more expensive per unit time cost ($) and worse performance
of SL compared to VM [32]. To get composite benefits from heterogeneous compute resources, i.e., VM and SL,
recent SDA systems [22, 23, 32, 36] tried to utilize VM and SL together to handle queries. However, none of the
existing SDA systems considered WAN, and thus they may encounter performance- and cost-bottlenecks.

2.3. Geo-distributed Data Analytics Systems

Many GDA systems [18, 21, 34, 47, 48] have been proposed to reduce the overall makespan of GDA queries by
overcoming the limitations of the WAN. In recent work, Kimchi [31] incorporates data transfer cost into task
placement decisions and handles changes in network dynamics with little or no impact on the job makespan.
However, these GDA systems were designed based on simple assumptions, both/either infinite compute resources
and/or non-scalable compute resources, which would cause a cost-bottleneck due to redundant compute resources
and a performance bottleneck due to lack of compute resources. That is, none of the GDA systems have predicted
GDA queries’ workloads to determine optimal cloud configurations in a multi-cloud environment.

To summarize, the previous postulations have overlooked WAN characteristics in the context of workload pre-
diction. Additionally, GDA systems on VM and SL mix need the hour to handle dynamic workloads efficiently.
Hence, we propose a Scalable WAN (SWAN) model to exploit network properties in optimal cloud resource pre-
diction and explore geo-distributed heterogeneous compute resources for handling dynamic workloads.

3. Methodology

Fig. 1 presents the overall architecture. The new model will use Bayesian Optimization (BO) to determine the
optimal number of instances for executing a query with minimum cost or time. These determinations will be used
by a Workload Handler (WH) module to schedule incoming tasks onto VM and SL instances. We will choose
BO because it incorporates black-box optimization, which will take care of the implicit non-linear relationships,
which otherwise would have been difficult to model [8, 30, 39, 41]. Other works that have tried establishing
mathematical relations between various features of a distributed application [6, 18, 33, 45] are either incompatible
with other applications [17, 50] or miss out on specific key characteristics. The choice of BO, however, presents
another challenge. It requires model fitting with real objective function, to explore/exploit the search space for
global optima. This can be achieved with representative workloads or test runs orchestrated on actual VM and SL
instances, but both of these are inefficient and costly. Therefore, we will use Random Forest (RF) [7, 14, 25] to
model the heterogeneous platform of VMs and SLs in a WAN setting. Several network and instance properties
will be embedded into the training of this model, so that the predictions accurately capture network latency
and cost. The choice of RF over other deep learning neural networks [38] is because it is less computationally
intensive and requires less training data [2, 15, 26, 44]. Although it is possible to iteratively parse all the available
instance configurations through the RF sub-module only, this operation would be costly. Considering 10 DCs and
instance configuration for each DC in the range 0–10, the search space would consist of a significant number of



(1110−1) combinations. Thus, the use of RF will help BO navigate through the plausible configurations efficiently.
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Fig. 1. Overview of the Proposed Research

The monitoring module and the WH task scheduler of SWAN
will be implemented in Spark [49], while the SWP and remainder
of the WH module will be designed and implemented as separate
modules written in Python. The SWAN prototype implementation
will be deployed and evaluated both in a simulated WAN environ-
ment (CloudLab) [37] and public cloud environments (e.g., AWS
and Azure). For serverless compute resources, we will deploy
Apache OpenWhisk [3] on CloudLab and utilize AWS Lambda
[4] and Azure Functions [5]. For workloads, we will use popu-
lar big data benchmarks, e.g., HiBench [20] (the bigdata micro-
benchmark suite) and TPC-DS [43] (a standard decision support benchmark). We will compare the prediction
latency and precision with the state-of-the-art approaches presented in Section 2, e.g., MArk [50].

4. Challenges

Considering SL instances for optimal resource determination increases the problem’s dimensionality , which ne-
cessitates prediction efficiency and accuracy. When coupled with WAN bandwidth, the complexity for decision-
making is further increased and geo-locality predictions must account for data locality in map stages and the
minimum shuffle overhead with lesser data transferred over the network. Additionally, the tradeoff space between
monetary budget and query latency needs to be carefully explored so that the high per-unit cost of SL instances do
not overshadow the cost of overprovisioned instances.

5. Project Timeline

The detailed project timeline is presented below.

Tasks Activities Timeline

Design
• Plan interaction among various modules and sub-modules in Spark.
• Determine the features to be used for finding optimal cloud configuration

in a WAN setting along with a plan to capture these metrics.
May-July

Execute & Test • Implement the proposed changes.
• Deploy the prototype in cloud and compare the results with recent works.

June-August

Project Report
• Document the proposition, approach, challenges, implementation and ex-

perimental results.
• Work with Dr. Oh on the final report.

May-August

6. Student/Faculty Mentor Roles

As the principal investigator of this research proposal, Anshuman Das Mohapatra will be responsible for designing,
modeling and implementing the proposed idea. Anshuman will also be accountable for running experiments on
simulated and real test beds for validation of the implemented prototype. The research advisor, Dr. Kwangsung
Oh, will review the progress through weekly meetings and address any unforeseen challenges. In addition, Dr. Oh
will assess the experimental results.

7. Outcomes

To recapitulate, our contribution through this project will be as follows:

• To the best of our knowledge, SWAN will be the first working model (involving intelligent workload pre-
diction) to use both VMs and SLs for distributed analytics in WAN.

• We will explore the tradeoffs between fastest query resolution versus budgeted query resolution.

• We will develop a prototype for the prediction model in Python and integrate it with Spark. The prototype
implementation will be deployed and evaluated in public cloud environments (e.g., AWS and Azure) and in
scientific infrastructure (CloudLab) using popular big data benchmarks such as TPC-DS and HiBench.



8. Budget Justification

The budget requested for this research project is $5,000, details of which are given below. Anshuman has a gradu-
ate assistantship that supports him over the Fall and Spring terms. The following stipend will allow him to pursue
research activities during the summer.

Item Justification Amount
Graduate Student
Stipend

Summer stipend (May 2022 - Aug 2022 for Anshuman Das Mohapatra who
will spend approximately 375 hours on this project.)

$4,500

Experimental
Expenses

For thorough evaluation, the working prototype will be deployed on cloud in-
stances rented from Amazon and Microsoft.

$500
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